神级遍历-morris

morris遍历介绍

morris遍历是二叉树遍历算法的超强进阶算法,跟递归、非递归(栈实现)的空间复杂度,morris遍历可以将非递归遍历中的空间复杂度降为O(1)。从而实现时间复杂度为O(N),而空间复杂度为O(1)的精妙算法。

morris遍历利用的是树的叶节点左右孩子为空(树的大量空闲指针),实现空间开销的极限缩减。

morris遍历的实现原则

记作当前节点为cur。

  1. 如果cur无左孩子,cur向右移动(cur=cur.right)
  2. 如果cur有左孩子,找到cur左子树上最右的节点,记为mostright
    1. 如果mostright的right指针指向空,让其指向cur,cur向左移动(cur=cur.left)
    2. 如果mostright的right指针指向cur,让其指向空,cur向右移动(cur=cur.right)

实现以上的原则,即实现了morris遍历。

morris遍历的实质

建立一种机制,对于没有左子树的节点只到达一次,对于有左子树的节点会到达两次

morris遍历的实例

一个树若按层遍历的结构为{1,2,3,4,5,6,7},即该树为满二叉树,头结点值为1,左右孩子为2,3,叶节点为4,5,6,7

我们按照morris遍历来遍历该树。

1)首先cur来到头结点1,按照morris原则的第二条第一点,它存在左孩子,cur左子树上最右的节点为5,它的right指针指向空,所以让其指向1,cur向左移动到2。

2)2有左孩子,且它左子树最右的节点4指向空,按照morris原则的第二条第一点,让4的right指针指向2,cur向左移动到4

3)4不存在左孩子,按照morris原则的第一条,cur向右移动,在第二步中,4的right指针已经指向了2,所以cur会回到2

4)重新回到2,有左孩子,它左子树最右的节点为4,但是在第二步中,4的right指针已经指向了2,不为空。所以按照morris原则的第二条第二点,2向右移动到5,同时4的right指针重新指向空

5)5不存在左孩子,按照morris原则的第一条,cur向右移动,在第一步中,5的right指针已经指向了1,所以cur会回到1

6)cur回到1,回到头结点,左子树遍历完成,1有左孩子,左子树上最右的节点为5,它的right指针指向1,按照morris原则的第二条第二点,1向右移动到3,同时5的right指针重新指回空

……

当到达最后一个节点7时,按照流程下来,此时7无左右孩子,遍历结束。

morris代码实现(前序、中序、后序遍历)

前序遍历:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public static void morrisPre(Node head) {
if(head == null){
return;
}
Node cur = head;
Node mostRight = null;
while (cur != null){
mostRight = cur.left;
if(mostRight != null){
while (mostRight.right !=null && mostRight.right != cur){
mostRight = mostRight.right;
}
if(mostRight.right == null){
mostRight.right = cur;
System.out.print(cur.value+" ");
cur = cur.left;
continue;
}else {
mostRight.right = null;
}
}else {
System.out.print(cur.value + " ");
}
cur = cur.right;
}
System.out.println();
}

中序遍历:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public static void morrisIn(Node head) {
if(head == null){
return;
}
Node cur = head;
Node mostRight = null;
while (cur != null){
mostRight = cur.left;
if(mostRight != null){
while (mostRight.right !=null && mostRight.right != cur){
mostRight = mostRight.right;
}
if(mostRight.right == null){
mostRight.right = cur;
cur = cur.left;
continue;
}else {
mostRight.right = null;
}
}
System.out.print(cur.value+" ");
cur = cur.right;
}
System.out.println();
}

后续遍历(复杂一点)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
public static void morrisPos(Node head) {
if(head == null){
return;
}
Node cur = head;
Node mostRight = null;
while (cur != null){
mostRight = cur.left;
if(mostRight != null){
while (mostRight.right !=null && mostRight.right != cur){
mostRight = mostRight.right;
}
if(mostRight.right == null){
mostRight.right = cur;
cur = cur.left;
continue;
}else {
mostRight.right = null;
printEdge(cur.left);
}
}
cur = cur.right;
}
printEdge(head);
System.out.println();
}
public static void printEdge(Node node){
Node tail =reverseEdge(node);
Node cur = tail;
while (cur != null ){
System.out.print(cur.value+" ");
cur =cur.right;
}
reverseEdge(tail);
}
public static Node reverseEdge(Node node){
Node pre = null;
Node next = null;
while (node != null){
next = node.right;
node.right = pre;
pre = node;
node = next;
}
return pre;
}

以上就是我今天所要分享的morris遍历,神级算法,时间复杂度为O(N),空间复杂度为O(1)。

-------------本文结束感谢您的阅读-------------
创作不易,您的支持就是我坚持的动力,谢谢大家!
0%